CIRBP protects H9C2 cells against myocardial ischemia through inhibition of NF-κB pathway

نویسندگان

  • T.Y. Long
  • R. Jing
  • F. Kuang
  • L. Huang
  • Z.X. Qian
  • T.L. Yang
چکیده

Myocardial ischemia is a major cause of death and remains a disease with extremely deficient clinical therapies and a major problem worldwide. Cold inducible RNA-binding protein (CIRBP) is reported to be involved in multiple pathological processes, including myocardial ischemia. However, the molecular mechanisms of myocardial ischemia remain elusive. Here, we first overexpressed CIRBP by transfection of pc-CIRBP (pcDNA3.1 containing coding sequenced for CIRBP) and silenced CIRBP by transfection of small interfering RNA targeting CIRBP (siCIRBP). pcDNA3.1 and the negative control of siCIRBP (siNC) were transfected into H9C2 cells to act as controls. We then constructed a cell model of myocardial ischemia through culturing cells in serum-free medium with hypoxia in H9C2 cells. Subsequently, AlamarBlue assay, flow cytometry and western blot analysis were used, respectively, to assess cell viability, reactive oxygen species (ROS) level and apoptosis, and expression levels of IκBα, p65 and Bcl-3. We demonstrated that CIRBP overexpression promoted cell proliferation (P<0.001), inhibited cell apoptosis (P<0.05), reduced ROS level (P<0.001), down-regulated phosphorylated levels of IκBα and p65 (P<0.01 or P<0.001), and up-regulated expression of Bcl-3 (P<0.001) in H9C2 cells with myocardial ischemia. The influence of CIRBP knockdown yielded opposite results. Our study revealed that CIRBP could protect H9C2 cells against myocardial ischemia through inhibition of NF-κB pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recombinant adeno-associated virus serotype 9 with p65 ribozyme protects H9c2 cells from oxidative stress through inhibiting NF-κB signaling pathway

BACKGROUND Oxidative stress is a major mechanism underlying the pathogenesis of cardiovascular disease. It can trigger inflammatory cascades which are primarily mediated via nuclear factor-κB (NF-κB). The NF-κB transcription factor family includes several subunits (p50, p52, p65, c-Rel, and Rel B) that respond to myocardial ischemia. It has been proved that persistent myocyte NF-κB p65 activati...

متن کامل

Danshensu protects against ischemia/reperfusion injury and inhibits the apoptosis of H9c2 cells by reducing the calcium overload through the p-JNK-NF-κB-TRPC6 pathway.

Ischemia-reperfusion (I/R) plays an important role in myocardial injury. In the present study, we aimed to examine the protective effects of Danshensu (DSS) against I/R injury and to elucidate the underlying mechanisms. For this purpose, H9c2 cells were cultured in hypoxic solution in a hypoxic incubator for 2 h, and then cultured in a high oxygen incubator for various periods of time and pre-t...

متن کامل

Ginsenoside Rb3 Protects Cardiomyocytes against Ischemia-Reperfusion Injury via the Inhibition of JNK-Mediated NF-κB Pathway: A Mouse Cardiomyocyte Model

Ginsenoside Rb3 is extracted from the plant Panax ginseng and plays important roles in cardiovascular diseases, including myocardial ischemia-reperfusion (I/R) injury. NF-κB is an important transcription factor involved in I/R injury. However, the underlying mechanism of ginsenoside Rb3 in myocardial I/R injury remains poorly understood. In the current study, a model of myocardial I/R injury wa...

متن کامل

Cardioprotective effect of carvedilol: inhibition of apoptosis in H9c2 cardiomyocytes via the TLR4/NF-κB pathway following ischemia/reperfusion injury

Carvedilol is a non-selective β-blocker used in the treatment of cardiovascular disease, including myocardial ischemia. The aim of the present study was to investigate the molecular mechanisms underlying the effects of carvedilol on simulated ischemia/reperfusion (SI/R)-induced cardiomyocyte apoptosis in vitro. H9c2 cardiomyocytes were incubated with either a vehicle or an ischemic buffer durin...

متن کامل

Gypenoside Protects Cardiomyocytes against Ischemia-Reperfusion Injury via the Inhibition of Mitogen-Activated Protein Kinase Mediated Nuclear Factor Kappa B Pathway In Vitro and In Vivo

Gypenoside (GP) is the major effective component of Gynostemma pentaphyllum and has been shown to encompass a variety of pharmacological activities. In this study, we investigated whether GP is able to protect cardiomyocytes against injury myocardial ischemia-reperfusion (I/R) injury by using in vitro oxygen-glucose deprivation-reoxygenation (OGD/R) H9c2 cell model and in vivo myocardial I/R ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2017